Sök:

Sökresultat:

3 Uppsatser om Bayesianskt vs. frekventistiskt - Sida 1 av 1

Cryptosporidiumutbrottet i Östersunds kommun 2010 : Påverkan på kommunens barn

Målet med den här studien är att undersöka hur barn under 15 år påverkades av Cryptosporidiumutbrottet i slutet av år 2010 i Östersunds kommun. Datamaterialet utgörs av svar på en enkätundersökning från 514 barn rörande deras hälsa relaterad till utbrottet. Dessa enkäter togs fram av svenska Smittskyddsinstitutet kort efter utbrottet och det är i uppdrag av denna myndighet som studien utförs. Analys av riskfaktorer och följdsymptom utförs med logistiska regressionsmodeller utifrån både ett Bayesianskt och ett frekventistiskt tillvägagångssätt för att på så sätt betrakta datamaterialet från fler synvinklar och samtidigt identifiera skillnader mellan dessa två tillvägagångssätten. En annan del av arbetet presenterar bortfallskalibrerade skattningar av antalet Cryptosporidiumfall både totalt och månadsvis men också skattningar av fallprevalensen i olika redovisningsgrupper.

Prediktering av fiendeintention, baserat på bayesiansk hypotesprövning

I detta arbete beskrivs hur den bayesianska metodiken kan användas för att stödja en militär beslutsfattare, då denne ska fatta beslut under osäkerhet. Genom att analysera vilka parametrar som kan användas för att prediktera fiendens intentioner, tas ett bayesianskt nätverk fram, vilket implementeras och integreras i simuleringsramverket GTSIM. För att möjliggöra denna prediktering har extra funktionalitet lagts till i GTSIM, såsom att skapa olika typer av mål. Dessa mål kan sättas ut på valfria platser och senare läsas in då en fusionerad lägesbild skapas av de olika sensorer som placerats ut. Målen representerar då de olika handlingsalternativ som en simulerad fiendestyrka har, och allteftersom fiendestyrkan rör sig uppdateras sannolikheten för att de olika målen ska anfallas av den framtagna modellen.

Filtrering av e-post ? Binär klassifikation med naiv Bayesiansk teknik

In this thesis we compare how different strategies in choosing attribute values affects junk mail filtering. We used two different variants of a naïve Bayesian junk mail filter. The first variant classified an e-mail by comparing it to a feature vector containing all attribute values that were found in junk mails in the part of the e-mail collection we used for training the filter. The second variant compared an e-mail to a feature vector that consisted of the attributes that was found in ten or more junk mails in the part of the e-mail collection we used for training the filter. We used an e-mail collection that consisted of 300 e-mails, 210 of these were junk mails and 90 were legitimate e-mails.